addCategoricalTransformedCovariate | Create a new categorical covariate by transforming an existing one. |
addContinuousTransformedCovariate | Create a new continuous covariate by transforming an existing one. |
addMixture | . |
getCovariateInformation | Get the name, the type and the values of the covariates present in the project. |
removeCovariate | Remove some of the transformed covariates (discrete and continuous) and/or latent covariates. |
Add categorical transformed covariate
Description
Create a new categorical covariate by transforming an existing one. Transformed covariates cannot be use to produce new covariates.
Call getCovariateInformation
to know which covariates can be transformed.
Usage
addCategoricalTransformedCovariate(...)
Arguments
…
A list of comma-separated pairs {transformedCovariateName = { from = (array<(string)>)[“basicCovariateNames”], transformed = (array<array<string>>)”transformation”} }
See Also
getCovariateInformation
removeCovariate
Click here to see examples
## Not run:
addCategoricalTransformedCovariate( Country2 = list( reference = “A1”, from = “Country”,
transformed = list( A1 = c(“A”,”B”), A2 = c(“C”) ) ) )
## End(Not run)
Top of the page, Monolix-R functions.
Add continuous transformed covariate
Description
Create a new continuous covariate by transforming an existing one. Transformed covariates cannot be use to produce new covariates.
Call getCovariateInformation
to know which covariates can be transformed.
Usage
addContinuousTransformedCovariate(...)
Arguments
…
A list of comma-separated pairs {transformedCovariateName = (string)”transformation”}
See Also
getCovariateInformation
removeCovariate
Click here to see examples
## Not run:
addContinuousTransformedCovariate( tWt2 = “3*exp(Wt)” )
## End(Not run)
Top of the page, Monolix-R functions.
Add mixture to the covariate model
Add a new latent covariate to the current model giving its name and its modality number.
Description
Add mixture to the covariate model
Add a new latent covariate to the current model giving its name and its modality number.
Usage
addMixture(...)
Arguments
…
A list of comma-separated pairs {latentCovariateName = (int)modalityNumber}
See Also
getCovariateInformation
removeCovariate
Click here to see examples
## Not run:
addMixture(lcat = 2)
## End(Not run)
Top of the page, Monolix-R functions.
Get covariates information
Description
Get the name, the type and the values of the covariates present in the project.
Usage
getCovariateInformation()
Value
A list containing the following fields :
- name : (vector<string>) covariate names
- type : (vector<string>) covariate types. Existing types are “continuous”, “continuoustransformed”, “categorical”, “categoricaltransformed” and “latent”.
- modalityNumber : (vector<int>) number of modalities (for latent covariates only)
- covariate : a data frame giving the values of continuous and categorical covariates for each subject.
Latent covariate values exist only if they have been estimated, ie if the covariate is used and if the population parameters have been estimated.
CallgetEstimatedIndividualParameters
to retrieve them.
Click here to see examples
## Not run:
info = getCovariateInformation()
info
-> $name
c(“sex”,”wt”,”lcat”)
-> $type
c(sex = “categorical”, wt = “continuous”, lcat = “latent”)
-> $modalityNumber
c(lcat = 2)
-> $covariate
id sex wt
1 M 66.7
. . .
N F 59.0
## End(Not run)
Top of the page, Monolix-R functions.
Remove covariate
Description
Remove some of the transformed covariates (discrete and continuous) and/or latent covariates.
Call getCovariateInformation
to know which covariates can be removed.
Usage
removeCovariate(...)
Arguments
…
A list of covariate names.
See Also
getCovariateInformation
addContinuousTransformedCovariate
addCategoricalTransformedCovariate
addMixture
Click here to see examples
## Not run:
removeCovariate(“tWt”,”lcat1″)
## End(Not run)
Top of the page, Monolix-R functions.