buildAll
builds the complete statistical model by
iteratively calling functions buildmlx
and
buildVar
.
buildAll <- function(project=NULL, final.project=NULL, model="all", prior=NULL, weight=NULL, coef.w1=0.5, cv.min=0.001, fError.min=1e-3,
paramToUse="all", covToTest="all", covToTransform="none", center.covariate=FALSE,
criterion="BICc", linearization=FALSE, ll=T, test=T, direction=NULL, steps=1000,
max.iter=20, explor.iter=2, seq.cov=FALSE, seq.corr=TRUE, seq.cov.iter=0,
p.max=0.1, p.min=c(0.075, 0.05, 0.1), print=TRUE, nb.model=1,
fix.param1=NULL, fix.param0=NULL, remove=T, add=T, delta=c(30,10,5),
omega.set=NULL, pop.set1=NULL, pop.set2=NULL)
a string: the initial Monolix project
a string: the final Monolix project (default adds "_buildAll" to the original project)
components of the model to optimize c("residualError", "covariate", "correlation"), (default="all")
list of prior probabilities for each component of the model (default=NULL)
list of penalty weights for each component of the model (default=NULL)
multiplicative weight coefficient used for the first iteration only (default=0.5)
value of the coefficient of variation below which an individual parameter is considered fixed (default=0.001)
minimum fraction of residual variance for combined error model (default = 1e-3)
list of parameters possibly function of covariates (default="all")
components of the covariate model that can be modified (default="all")
list of (continuous) covariates to be log-transformed (default="none")
TRUE/FALSE center the covariates of the final model (default=FALSE)
penalization criterion to optimize c("AIC", "BIC", "BICc", gamma)
TRUE/FALSE whether the computation of the likelihood is based on a linearization of the model (default=FALSE, deprecated)
TRUE/FALSE compute the observe likelihood and the criterion to optimize at each iteration
TRUE/FALSE perform additional statistical tests for building the model (default=TRUE)
method for covariate search c("full", "both", "backward", "forward"), (default="full" or "both")
maximum number of iteration for stepAIC (default=1000)
maximum number of iterations (default=20)
number of iterations during the exploratory phase (default=2)
TRUE/FALSE whether the covariate model is built before the correlation model
TRUE/FALSE whether the correlation model is built iteratively (default=TRUE)
number of iterations before building the correlation model (only when seq.cov=F, default=0)
maximum p-value used for removing non significant relationships between covariates and individual parameters (default=0.1)
minimum p-values used for testing the components of a new model (default=c(0.075, 0.05, 0.1))
TRUE/FALSE display the results (default=TRUE)
number of models to display at each iteration (default=1)
parameters with variability that cannot be removed (default=NULL)
parameters without variability that cannot be added (default=NULL)
try to remove random effects (default=T)
try to add random effects (default=T)
maximum difference in criteria for testing a new model (default=c(30,10,5))
settings to define how a variance varies during iterations of SAEM
Monolix settings 1
Monolix settings 2
Using version <= 4.0.2 of Rsmlx
requires to load
explicitly lixoftConnectors
. This package is automatically
loaded with Rsmlx 4.0.3
.
library(lixoftConnectors)
initializeLixoftConnectors(software="monolix")
library(Rsmlx)
We select a Monolix project
project <- "projects/simulatedPK2.mlxtran"
Example using the defaults settings of buildmlx
and
buildVar
:
buildAll.res1 <- buildAll(project)
Selected model:
loadProject(buildAll.res1$project)
getIndividualParameterModel()
## $name
## [1] "ka" "Cl" "V1" "Q" "V2"
##
## $distribution
## ka Cl V1 Q V2
## "logNormal" "logNormal" "logNormal" "logNormal" "logNormal"
##
## $limits
## named list()
##
## $formula
## [1] "log(ka) = log(ka_pop) + eta_ka\nlog(Cl) = log(Cl_pop) + beta_Cl_X03*X03 + eta_Cl\nlog(V1) = log(V1_pop) + beta_V1_X01*X01 + beta_V1_X02*X02 + eta_V1\nlog(Q) = log(Q_pop) + beta_Q_X01*X01\nlog(V2) = log(V2_pop)\nCorrelations\n\tID : {Cl, V1}\n"
##
## $variability
## $variability$id
## ka Cl V1 Q V2
## TRUE TRUE TRUE FALSE FALSE
##
##
## $covariateModel
## $covariateModel$ka
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$Cl
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$V1
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$Q
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$V2
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
## $correlationBlocks
## $correlationBlocks$id
## $correlationBlocks$id[[1]]
## [1] "Cl" "V1"
Example using several settings of buildmlx
and
buildVar
:
buildAll.res2 <- buildAll(project, final.project="projects/buildAll2.mlxtran",
paramToUse=c("Cl", "V1", "Q"), covToTest=c("X01", "X02", "X03", "X04"),
fix.param0="Q", fix.param1=c("ka", "Cl"))
Selected model:
loadProject(buildAll.res2$project)
getIndividualParameterModel()
## $name
## [1] "ka" "Cl" "V1" "Q" "V2"
##
## $distribution
## ka Cl V1 Q V2
## "logNormal" "logNormal" "logNormal" "logNormal" "logNormal"
##
## $limits
## named list()
##
## $formula
## [1] "log(ka) = log(ka_pop) + eta_ka\nlog(Cl) = log(Cl_pop) + beta_Cl_X03*X03 + eta_Cl\nlog(V1) = log(V1_pop) + beta_V1_X01*X01 + beta_V1_X02*X02 + eta_V1\nlog(Q) = log(Q_pop) + beta_Q_X01*X01\nlog(V2) = log(V2_pop)\nCorrelations\n\tID : {Cl, V1}\n"
##
## $variability
## $variability$id
## ka Cl V1 Q V2
## TRUE TRUE TRUE FALSE FALSE
##
##
## $covariateModel
## $covariateModel$ka
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$Cl
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$V1
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$Q
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$V2
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
## $correlationBlocks
## $correlationBlocks$id
## $correlationBlocks$id[[1]]
## [1] "Cl" "V1"
Following what is done with buildmlx
and
buildVar
, prior information about the statistical model can
be introduced either by defining prior probabilities or introducing a
weighting for the penalty term.
In this example, relationships between covariates and parameters are strongly penalized (weight=5) while correlations are lightly penalized (weight=0.1).
Different weights are used for the variances: variability of Q is privileged while that of V1 is strongly penalized.
buildAll.res3 <- buildAll(project, weight=list(covariate=5, correlation=0.3, variance=c(Q=0.05, V1=20)))
print(buildAll.res3$variability.model)
## NULL
loadProject(buildAll.res3$project)
getIndividualParameterModel()
## $name
## [1] "ka" "Cl" "V1" "Q" "V2"
##
## $distribution
## ka Cl V1 Q V2
## "logNormal" "logNormal" "logNormal" "logNormal" "logNormal"
##
## $limits
## named list()
##
## $formula
## [1] "log(ka) = log(ka_pop) + eta_ka\nlog(Cl) = log(Cl_pop) + beta_Cl_X03*X03 + eta_Cl\nlog(V1) = log(V1_pop) + beta_V1_X01*X01 + beta_V1_X02*X02 + eta_V1\nlog(Q) = log(Q_pop) + beta_Q_X01*X01\nlog(V2) = log(V2_pop)\nCorrelations\n\tID : {Cl, V1}\n"
##
## $variability
## $variability$id
## ka Cl V1 Q V2
## TRUE TRUE TRUE FALSE FALSE
##
##
## $covariateModel
## $covariateModel$ka
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$Cl
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$V1
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$Q
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
## $covariateModel$V2
## X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
## $correlationBlocks
## $correlationBlocks$id
## $correlationBlocks$id[[1]]
## [1] "Cl" "V1"