Using the lixoftConnectors library requires to initialize the connectors:
library(Rsmlx)
library(lixoftConnectors)
initializeLixoftConnectors(software="monolix")
In some non-standard installation cases of Monolix, it may be necessary to specify the path to the installation directory of the Lixoft suite. If no path is given, the one written in the lixoft.ini file is used (usually “C:/ProgramData/Lixoft/MonolixSuite2019R1” for Windows).
initializeLixoftConnectors(software = "monolix", mlxDirectory = "/path/to/MonolixSuite2019R1/")
Get
Example:
We first load the warfarinPKPD project with the results already available
project <- "projects/warfarinPK1.mlxtran"
loadProject(project)
In this example, \(V\) depends on \({\rm wt}\) while \(Cl\) depends on \({\rm sex}\)
getIndividualParameterModel()$covariateModel
## $ka
## sex age lw70 wt
## FALSE FALSE FALSE FALSE
##
## $V
## sex age lw70 wt
## FALSE FALSE TRUE FALSE
##
## $Cl
## sex age lw70 wt
## FALSE FALSE FALSE FALSE
p <- getEstimatedIndividualParameters2()
names(p)
## [1] "saem" "conditionalMean" "conditionalSD" "conditionalMode"
## [5] "popPopCov" "popIndCov"
head(p$popPopCov,8)
## id ka V Cl
## 1 100 0.5594172 7.772386 0.1343697
## 2 1 0.5594172 7.772386 0.1343697
## 3 2 0.5594172 7.772386 0.1343697
## 4 3 0.5594172 7.772386 0.1343697
## 5 4 0.5594172 7.772386 0.1343697
## 6 5 0.5594172 7.772386 0.1343697
## 7 6 0.5594172 7.772386 0.1343697
## 8 7 0.5594172 7.772386 0.1343697
head(p$popIndCov,8)
## id ka V Cl
## 1 100 0.5691976 7.482658 0.1349938
## 2 1 0.7095464 7.476286 0.1349008
## 3 2 0.5684471 7.463233 0.1347260
## 4 3 0.6272887 8.772129 0.1348159
## 5 4 0.6449007 4.723045 0.1348280
## 6 5 0.7240235 8.322553 0.1349552
## 7 6 0.6356540 6.784286 0.1348601
## 8 7 0.5907157 9.739375 0.1347473
head(p$conditionalMode,8)
## id ka V Cl
## 1 100 0.2053403 7.382659 0.27474550
## 2 1 0.5494448 7.545219 0.11453703
## 3 2 0.4015868 7.719795 0.13139649
## 4 3 0.6455293 8.458496 0.11440732
## 5 4 0.7542916 4.870141 0.07659949
## 6 5 0.3653399 10.142430 0.18006483
## 7 6 0.8940491 6.115875 0.22535382
## 8 7 1.6231441 8.130109 0.17436857
Get the individual predictions obtained with the estimated individual parameters
project <- "projects/warfarinPKPD.mlxtran"
loadProject(project)
r <- getEstimatedPredictions()
names(r)
## [1] "Cc"
head(r$Cc)
## id time popPopCov popIndCov conditionalMean conditionalMode
## 1 100 0.5 3.125110 3.294518 1.304481 1.309254
## 2 100 1.0 5.460808 5.743453 2.458972 2.466621
## 3 100 2.0 8.488294 8.891441 4.376165 4.385256
## 4 100 3.0 10.126638 10.572286 5.854315 5.860918
## 5 100 6.0 11.505459 11.932067 8.417560 8.407200
## 6 100 9.0 11.276931 11.650951 9.255561 9.228687
head(r$E)
## NULL
Get the residuals computed from the individual predictions obtained with the estimated individual parameters.
r <- getEstimatedResiduals()
names(r)
## [1] "y1"
head(r$y1)
## popPopCov popIndCov conditionalMean conditionalMode
## 1 -4.0443223 -4.1959265 -2.0418956 -2.0482427
## 2 -3.7702763 -3.9819327 -0.7723387 -0.7823004
## 3 -4.4457200 -4.6724940 -1.2445584 -1.2541024
## 4 -2.7391646 -3.0087331 0.7660833 0.7589204
## 5 -1.7319649 -1.9940951 0.5873834 0.5966913
## 6 -0.3476021 -0.6080139 1.2623709 1.2864144
head(r$y2)
## NULL
Get the individual predictions obtained with the simulated individual parameters
r <- getSimulatedPredictions()
names(r)
## [1] "Cc"
head(r$Cc)
## rep id time Cc
## 1 1 100 0.5 1.303916
## 2 1 100 1.0 2.464263
## 3 1 100 2.0 4.407532
## 4 1 100 3.0 5.924433
## 5 1 100 6.0 8.629438
## 6 1 100 9.0 9.594068
head(r$E)
## NULL
Get the residuals computed from the individual predictions obtained with the simulated individual parameters.
r <- getSimulatedResiduals()
names(r)
## [1] "y1"
head(r$y1)
## rep id time residual
## 1 1 100 0.5 -2.0411440
## 2 1 100 1.0 -0.7792311
## 3 1 100 2.0 -1.2774269
## 4 1 100 3.0 0.6903906
## 5 1 100 6.0 0.3996595
## 6 1 100 9.0 0.9660358
head(r$y2)
## NULL