Perform several statistical tests using the results of a Monolix run to assess the statistical components of the model in use.
The tests used are:
1) F-tests (or, equivalently, correlation tests) to evaluate the effect of each covariate on each parameter (“covariate”), 2) Shapiro-Wilk and Miao-Gel-Gastwirth tests to assess, respectively the normality and the symmetry of the distribution of the random effects ("“randomEffect”), 3) correlation tests to assess the correlation structure of the random effects (“correlation”), 4) Shapiro-Wilk aand Miao-Gel-Gastwirth tests to assess, respectively the normality and the symmetry of the distribution of residual errors (“residual”).
By default, the four tests are performed.
When several samples of the conditional distributions are used, two methods are proposed in order to take into the dependance of the samples for the Shapiro-Wilk and Miao-Gel-Gastwirth tests:
r <- testmlx(project, tests=c("covariate","randomEffect","correlation","residual"), plot=FALSE)
library(Rsmlx)
project <- "projects/warfarinPK1.mlxtran"
r <- testmlx(project)
print(r)
## $covariate
## $covariate$p.value.parameters
## parameter covariate p.value in.model
## 6 log.V lw70 1.173e-10 TRUE
## 3 log.ka wt 2.179e-01 FALSE
## 2 log.ka lw70 3.468e-01 FALSE
## 4 log.ka sex 5.143e-01 FALSE
## 1 log.ka age 5.321e-01 FALSE
## 7 log.V wt 3.235e-10 FALSE
## 8 log.V sex 7.321e-06 FALSE
## 5 log.V age 6.438e-01 FALSE
## 10 log.Cl lw70 2.815e-02 FALSE
## 11 log.Cl wt 3.472e-02 FALSE
## 9 log.Cl age 9.683e-02 FALSE
## 12 log.Cl sex 5.278e-01 FALSE
##
## $covariate$p.value.randomEffects
## random.effect covariate p.value in.model
## 6 eta_V lw70 0.82220 TRUE
## 1 eta_ka age 0.53210 FALSE
## 2 eta_ka lw70 0.34680 FALSE
## 3 eta_ka wt 0.21790 FALSE
## 4 eta_ka sex 0.51430 FALSE
## 5 eta_V age 0.88430 FALSE
## 7 eta_V wt 0.81140 FALSE
## 8 eta_V sex 0.35240 FALSE
## 9 eta_Cl age 0.09683 FALSE
## 10 eta_Cl lw70 0.02815 FALSE
## 11 eta_Cl wt 0.03472 FALSE
## 12 eta_Cl sex 0.52780 FALSE
##
##
## $residual
## $residual$p.value
## normality symmetry
## y1 2.496235e-10 0.3264386
##
##
## $randomEffect
## $randomEffect$p.value
## normality symmetry
## eta_ka 0.8585802 0.8062688
## eta_V 0.9094974 0.3072749
## eta_Cl 0.3235660 0.1731036
##
##
## $correlation
## $correlation$p.value
## randomEffect.1 randomEffect.2 correlation p.value
## 1 eta_ka eta_V -0.03069282 0.8065
## 2 eta_ka eta_Cl -0.09494253 0.5387
## 3 eta_V eta_Cl -0.01957748 0.8608
Performs the statistical tests for the random effects and the residuals only:
r <- testmlx(project, tests=c("randomEffect", "residual"))
print(r)
## $residual
## $residual$p.value
## normality symmetry
## y1 2.496235e-10 0.3264386
##
##
## $randomEffect
## $randomEffect$p.value
## normality symmetry
## eta_ka 0.8585802 0.8062688
## eta_V 0.9094974 0.3072749
## eta_Cl 0.3235660 0.1731036
Instead of estimating an effective degrees of freedom, use the Benjamini-Hochberg method for taking into account the dependance of the samples for the Shapiro-Wilk and Miao-Gel-Gastwirth tests:
r <- testmlx(project, tests=c("randomEffect", "residual"), adjust="BH")
print(r)
## $residual
## $residual$p.value
## normality symmetry
## y1 3.031851e-08 0.2888159
##
##
## $randomEffect
## $randomEffect$p.value
## normality symmetry
## eta_ka 0.9323607 0.6808700
## eta_V 0.2888200 0.5193830
## eta_Cl 0.3409445 0.2097142
Create some graphs:
r <- testmlx(project, plot=TRUE)
names(r)
## [1] "covariate" "residual" "randomEffect" "correlation"
names(r$covariate)
## [1] "p.value.parameters" "p.value.randomEffects" "plot"